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It is well known that the phenomenon of thermal diffusion can greatly affect the convective stability of a 
binary- mixture consisting of nonreaeting components [I]. Convective stability of equilibrium in a liquid binary 
mixture in a planar horizontal layer was studied in [2-9]. In [3-7], a hysteresis loop was obtained in Benard's 
problem for a two-component fluid and in [3-5] this problem was also studied experimentally. _The effect of 
thermal diffusion on the convective stability of equilibrium and convective heat and mass transfer in a vertical 
gap was studied in [i, I0, II]. In [12], the effect of thermal diffusion on heat transfer through a boundary layer 
was studied theoretically and experimentally. Free convection of a binary fluid mixture in an inclined rectan- 
gular cavity was investigated in [13]. 

In this paper, we study numerically free convection of a binary mixture in a square horizontal cylinder 
taking into account thermal diffusion. We examine lateral heating. It is assumed that thermal diffusion is the 
only reason for the appearance of a concentration inhomogeneity. The investigation is carried out for gas mix- 
tures and aqueous solutions of salts. It is shown that in the presence of weak convection the normal thermal 
diffusion can double the convective velocity, while anamolous thermal diffusion can decrease it. For Rayleigh 
numbers of the order of 103, a vertical component appears in the concentration gradient at the center of the 
cavity. For anamalous thermal diffusion, it turns out that the maximum value of the stream function is not 
a unique function of the Rayleigh number (hysteresis is observed). For Rayleigh numbers exceeding 104, the 
effect of thermal diffusion on convective motion can be neglected. 

We will examine aninfinite square horizontal cylinder with height a, filled with a binary fluid mixture. 
The lateral boundaries are impenetrable and have different temperatures T I and T 2. The upper and lower 
boundaries are also impenetrable to matter and have a linear temperature distribution. If there is no convec- 
tion in the cavity, then the concentration field arising as a result of the Soret effect is nearly linear [14, 15]. 
The maximum concentration differentials are very small [i!], so that we will neglect energy flow caused by 
the inhomogeneity of the mixture. The Sorer coefficient is assumed to be constant. The system of dimension- 
less equations describing two dimensional motion has the form [I, 16] 

7 o~ ab, a.v a.~: A~r. -F G r  \ a ,  -~  ~ a~: } '  
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w h e r e  r is the s t r e a m  funct ion;  q~ is the vo r t i c i t y ;  T is the t e m p e r a t u r e ;  C is the c o n c e n t r a t i o n  of the heavy 
componen t s ;  P r  = v / •  is P r a n d t l ' s  n u m b e r ;  Sc = v / D  is S c hmi d t ' s  n u m b e r ;  Gr  = gt31(T 2 - T1)a3/v 2 is Gra sho f f ' s  

n u m b e r ;  e = ozfi 2 ~ i l l  is the d i m e n s i o n l e s s  t h e r m a l  di f fus ion p a r a m e t e r ;  ill,  v, )l, and D a r e  the coef f ic ien ts  of 

t h e r m a l  expans ion ,  k inet ic  v i s c o s i t y ,  t h e r m a l  conduc t iv i ty ,  and di f fus ion,  r e s p e c t i v e l y ;  a = k 0 / T  O is the coef -  
f i c i en t  of t h e r m a l  diffusion;  k 0 is  the t h e r m a l  d i f fus ion ra t io ;  T o is the a ve r a ge  t e m p e r a t u r e  over  the vo lume  of 
the cavi ty ;  fi2 = (1/p)(Op/3T);  p is the dens i ty  of the m i x t u r e .  

In o r d e r  to put the equat ions  into d i m e n s i o n l e s s  f o r m ,  the fol lowing quan t i t i e s  w e r e  used as s c a l e s ;  a is 
the length  sca le ;  a 2 / v  is the t ime  sca le ;  v is the s c a l e  for  the s t r e a m  funct ion;  (T 2 - T t) is the t e m p e r a t u r e  
scale; and c~ (T 2 - TI) is the concentration scale. 

If all boundaries are solid and impenetrable to matter, then the boundary conditions have the form 

7 - 0 '  fo~ x==O, 
aq) aT , i~C ==0, for x = l ,  ~ = -5~'x = 0 '  J~ a =  T = I  

04 == 0, aT A_ OC = 0 ,  T - = x  for g = 0 ,  g =  t. * . . . .  b~" -~-,j ' r 
(2) 

The system of equations (I) with boundary conditions (2) was solved numerically. An explicit finite dif- 

ference scheme was used [17-21]. A uniform grid was introduced in the region 0 -< x -< 1 and 0 ~< y -< 1 

z i =ih l ,  i = O ,  i, 2 , . . . ,  M, h~ = i/M, 
y~ = kh2,  k = 0 ,  1, 2 . . . .  , K, h2 = i / K  

and the d i s c r e t e  s tep  in t i m e  is  ~- = h2(4 + ~or , w he r e  h is the s m a l l e s t  coo rd ina t e  s tep;  ,~ is a p a r a m e t e r  tha t  
is  d e t e r m i n e d  e x p e r i m e n t a l l y  f r o m  the condi t ion  that  the s c h e m e  be s t ab le ;  r is the m a x i m u m  va lue  of the 
s t r e a m  funct ion at  each t i m e  s tep.  Most  of the ca l cu l a t i ons  w e r e  c a r r i e d  out for  M = 15, K = 15, and ~ - 1, 2. 

The spa t i a l  d e r i v a t i v e s  w e r e  r ep laced  by c e n t r a l  d i f f e r ences .  In f o r m u l a t i n g  the boundary  condi t ions  for  the 
v o r t i c i t y ,  we used  Thorn ' s  equat ions  [20]. P o i s s o n ' s  equat ion for  the s t r e a m  funct ion  was so lved by the method 

of s u c c e s s i v e  u n d e r - r e l a x a t i o n .  The a c c u r a c y  of the ca l cu l a t i ons  was mon i t o r e d  by c o m p a r i n g  the so lu t ions  on 
d i f f e ren t  g r ids .  Some ca l cu l a t i ons  w e r e  c a r r i e d  out add i t iona l ly  on 11 x 11 and 17 x 17 g r ids .  

The l i n e a r  t e m p e r a t u r e  f ield Tik  = ih~ and the z e r o  f ield for  the s t r e a m  funct ion  ~ik = 0 w e r e  given as 
i n i t i a l  condi t ions .  Two in i t i a l  condi t ions  were  used for  the concen t r a t i on :  e i t he r  a l i n e a r  f ield Cik = 1 - ihj o r  
a u n i f o r m  field Cik = 0.5. In s o m e  c a s e s ,  the s t a t i o n a r y  s t a te  obta ined in the ca l cu l a t i ons  was used as an i n i -  
t i a l  condi t ion  for d e t e r m i n i n g  the new s t a t i o n a r y  s t a t e ,  c o r r e s p o n d i n g  to o ther  va lues  of the p a r a m e t e r s ,  for  
example ,  fo r  h igher  Ray le igh  n u m b e r .  S t a t i ona ry  mot ion  was u sua l l y  a t ta ined  th rough  damping  of o s c i l l a t i o n s .  
The s t a b i l i z a t i o n  t i m e  of the s t a t i o n a r y  so lu t ion  is d e t e r m i n e d  by the in i t i a l  s ta te  and by the d i m e n s i o n l e s s  
p a r a m e t e r s :  for  p a r a m e t e r s  c o r r e s p o n d i n g  to gas m i x t u r e s ,  this t ime  was 0 .2-1 .0  un i t s .  

The m a x i m u m  va lue  of the s t r e a m  funct ion was used as a c h a r a c t e r i s t i c  of the i n t e n s i t y  of convec t ive  
mot ion ,  whi le  N u s s e l t ' s  n u m b e r  Nu was used  as a c h a r a c t e r i s t i c  of the i n t e ns i t y  of heat  t r a n s f e r  th rough the 
cav i ty ,  i . e . ,  the d i m e n s i o n l e s s  heat  flow: 

Nu -= "~n dl .  

F 

Here ,  3 T / O n  is the n o r m a l  componen t  of the t e m p e r a t u r e  g r ad i en t  on the boundary  of the cav i ty ,  whi le  the 
i n t e g r a t i o n  is c a r r i e d  out ove r  the r eg ion  of the boundary  in which the heat  flux dens i ty  has the s a m e  s ign .  
In the absence  of convec t ion ,  Nu = 1.0. 

The effect  of t h e r m a l  d i f fus ion  on convec t ive  mot ion  was s tudied  in  g r e a t e s t  de ta i l  fo r  gas m i x t u r e s  
w i t h / ~  = 1, Sc = 1-2.  N u m e r i c a l  e x p e r i m e n t s  w e r e  c a r r i e d  out for  Ray le igh  n u m b e r s  10 -< Ra -< 105 (Ra = 
G r P r ) .  In the r e g i o n  Ra <- 103, the m a x i m u m  va lue  of the s t r e a m  func t ion  ~0 and of the N u s s e l t ' s  n u m b e r s  Nu 
d e p e n d s l i n e a r l y o n t h e  p a r a m e t e r  t~ = (1 + e )Ra :  

% = A n ,  Nu ~-- t ~-B~t. 

The cons t an t s  A = 1.32 �9 10 -3 and B = 3.02 * 10 -4 t u r n  out to be the s a m e  as in the ca se  of a s i n g l e - c o m p o n e n t  
f lu id ,  s tudied  p r ev ious ly  in [19, 21]. Thus ,  in the r eg ion  of Ray le igh  n u m b e r s  ind ica ted  above the i n t e n s i t y  of 
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convective motion turns out to be a factor of (i + e) greater than for a single-c~mponent fluid. The structure 

of the flows, obtained for different Ra, ~, but with the same value of ~, is the same. 

The dependence of the Nusselt number on the Rayleigh number for Pr = 1 and Sc = 1 is shown in Fig. 1 

(e = 0, I, -0.5, and -1 for curves 1-4, respectively), from which it is evident that ~-hen the Ray!eigh number 

increases in the region Ra >~ 103, the effect of the thermal diffusion parameter e on the heat transfer intensity 

decreases and for Ra > 104 thermal diffusion does not affect heat transfer. The temperature field, in this case, 

has the same form as in the case of a single-component fluid. The dependence of the maximum value of the 
stream function @0 on the Rayleigh number has the same form. For Ra < 102, the distribution of temperature 

and concentration in the cavity is practically linear, in the region Ra > 102, appreciable distortions appear in 

the concentration field. Figure 2 shows the dependence of the vertical and horizontal components of the con- 

centration gradient (5C/0y and ~C/ax in curves 2 and i, respectively) at the center of the cavity on Rayleigh's 

number for Pr = I, Sc = I, and e = 0.3. The concentration gradient at the center of the cavity, having at first 

a horizontal orientation, begins to turn as a result of an increase in the vertical component and a decrease in 

the horizontal component. For Ra ~ 103, the concentration gradient at the center of the cavity is almost ver- 

tical. It continues to rotate in the same direction as the Rayleigh number increases and can have an orienta- 

tion opposite to the initial orientation. 

The effect described is a result of the close interaction of convective motion, the usual diffusion, and 

thermal diffusion. It is reminiscent of the appearance of a vertical temperature differential and temperature 

stratification with convection of a single-component fluid in a closed region, studied previously in [22-24], but 

differs from the latter by a more complicated mechanism leading to its appearance. In contrast to concen- 

tration stratification, in alloys of liquid metals, arising with isogradient crystallization [25], the effect being 

examined is impossible in the absence of therrnal diffusion. We recall that thermal diffusion in this paper is 

assumed to be the only reason for the appearance of concentration gradients. 

The case of anomalous thermal diffusion with ~ ~ -1 is of special interest. The dimensionless thermal 

diffusion parameter ~ determines the ratio of buoyancy forces, caused by a perturbation of the concentration, 

to buoyancy forces caused by a temperature perturbation. A negative sign for the parameter ~ shows that these 

forces have opposite orientations. In this connection, it turns out that mechanical equilibrium can exist for 

=-1.0. The well-known condition for mechanical equilibrium of a binary mixture [I] (~IVT + ~2VC) .~/is 

satisfied in this case automatically, since ~IVT + ~2VC = 0. The density gradient, determined by temperature 

and concentration fields, equals zero. The direction of the temperature gradient can be arbitrary. In particu- 

lar, mechanical equilibrium in a binary mixture is possible with lateral heating. In a single-component fluid, 

as is well known, mechanical equilibrium is possible only with strictly vertical temperature gradients [i]. 

With lateral heating, a binary mixture with e = -I.0 can be in an equilibrium state until the diffusion of heat 
and mass smooths outdensityfluctuations. With intense heating, mechanical equilibrium becomes unstable. 

Figure 3 shows the dependence of the Nusselt number on the Rayleigh number for gas mixtures with Pr = 

I ,  Sc = I ,  and ~ = - i . 0 .  ForRa< Ral, mechanical equilibrium is stable relative to both small and finite ampli- 
tude perturbations. (The stability of equilibrium was checked by introducing a vortieity at the center of the 
cavity with an amplitude corresponding to developed convective motion.) When Rayleigh numbers Ra >~ Ra 2 
7500 are attained, the equilibrium becomes unstable relative to small perturbations and convection suddenly 
appears with a finite amplitude. A decrease in Rayleigh's number leads to a decrease in heat transfer. For 
Ra i ~ 2700, heat transfer drops sharply to zero. Thus, hysteresis, related to the possibility of exciting sta- 
tionary convective motion in the subcritical region (Ra I < Ra < Ra 2) by introducing finite amplitude perturba- 
tions, occurs. Numerical experiments, carried out for gas mixtures with Sc = 2 and a =-1 .0 ,  gave similar 
results. We note that in a flat horizontal layer of a binary mixture heated from below, the dependence of the 
Nusselt number on the Rayleigh number also exhibits a hysteresis loop [3-7]. 
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Thermal  diffusion convection was also studied for aqueous solutions of salts with Pr  = 5 and Se = 500. 
The large values of Pr  and Sc, charac te r i s t i c  for fluids, lead to a large increase  in machine t ime necessa ry  
for obtaining a s t a t i o n a ~  solution. For  this reason,  in order  to conserve  machine t ime,  we change the time 
scale in solving the equations of thermal  conductivity and diffusion. Control experiments showed that a change 
in the time scale permits obtaining rapidly a s ta t ionary solution and does not affect the final resul ts .  However, 
in studying the stability of motion, this method leads to large distortions of the resul ts .  For  this reason,  the 
stability of the solutions obtained was not studied. 

In the ease of anomalous thermal  diffusion in fluid mixtures ,  two stat ionary solutions, differing by their 
intensity and the orientation of the convection and concentrat ion fields, can also exist. As an example, Fig. 4 
shows the dependence of the amplitude of the s t r eam function on the dimensionless thermal  diffusion parameter  

(Gr = 10). For  such a Grashoff number,  the intensity of motion is so low that the tempera ture  field remains  
praeticaIiy undistorted. Curve i cor responds  to convective motion with the usual direction of circulation. The 
liquid r ises  at the heated wall and drops at the cold wall. The intensity of this motion decreases  with dec rea s -  
ing ~. The concentrat ion gradient at the center  of the cavity decreases  by an o rder  of magnitude. Curve 2 c o t -  
responds to motion with oppositely directed circulation. The fluid r i ses  at the cold wall and drops at the hot 
wall. The concentration gradient  at the center  of the cavity turns by some angle (up to 40-60~ The magnitude 
of the concentrat ion gradient varies  insignificantly. The existence of such motion was discovered,  at least,  
for  e - < - l .  

Both for positive as well as for negative values of the thermal  diffusion pa ramete r  ~, convective motion 
had a s t ruc ture  s imi la r  to the s t ruc ture  of the motion of a single component fluid with corresponding Rayleigh 
numbers.  Since in the present  work the investigations were  ca r r i ed  out in the region Ra < 105, double-vortex 
motion, discovered previously in [19], was not observed.  The maximum value of the s t r eam function was al- 
ways found at the center  of the cavity. Thermal  diffusion was not observed to have a large effect on the s t rue -  
tare  of the motion. 
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MODEL OF A NONEQUILIBRIUM TWO-PHASE ZONE 

INTO ACCOUNT CONVECTION OF A BINARY MELT 

A. No Cherepanov 

T A K I N G  

UDC 669.18-412:620.18:536.421.4 

A mathematical model of a two-phase dendrite zone was constructed in [I, 2] for nonequilibrium crystal- 
lization of a binary melt. In t,his case, the change in the density of the melt in the phase transformation process 
was neglected and the melt was assumed to be stationary. It is evident that when a crystal grows, as a result 
of settling phenomena, a flow of the liquid phase, oriented toward the crystal, must exist in the melt. This 
effect was examined in [3, 4] for crystallization of pure metals. It is shown therein that the flows of the melt 
arising affect the temperature and pressure field in the liquid phase~ In the process of nonequilibrium crystal- 
lization of a binary melt, these flows will also affect the distribution of the admixture in the liquid phase and, 
therefore, the structure of diffusion overcooling as well. Since the .kinetics of the growth and morphology of 
dendrites in the two-phase zone are determined by overcooling of the melt, this effect will affect the develop- 
ment of the two-phase zone as a whole, as well as the nature of the chemical inhomogeneity and formation of 

porosity in the ingot. 

In what follows, based on phenomenological assumptions, we formulate a mathematical model of heat and 
mass transfer processes in the two-phase zone of a solidifying binary alloy talcing into account the kinetics of 
growth of dendrites and the density discontinuity along the phase separation surface. 

Let us examine directed crystallization of a binary melt in the presence of a two-phase zone. The scheme 
of the physical model is illustrated in Fig. i. We assume that the two-phase zone consists of homogeneous den- 
drites with a column (~ = I) or plate (u - 0) form, while their growth velocity along the normal to the surface 
of the crystal is an exponential function of the local overcooling AT: 
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